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• Introduction

– Encoder: contains memory (order m: m memory units);

– Output: encoder output at time unit t depends on the input and the memory 

units status at time unit t;

– By increasing the memory order m, one can increase the convolutional code’s 

minimum distance (dmin) and achieve low bit error rate performance (Pb);

– Decoding Methods:

• Viterbi algorithm [1]: Maximum Likelihood (ML) decoding algorithm;

• Bahl, Cocke, Jelinek, and Raviv (BCJR) [2] algorithm: Maximum A 

Posteriori Probability (MAP) decoding algorithm, used for iterative 

decoding process, e.g. turbo decoding. 

[1] A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum decoding algorithm,” 

IEEE Trans. Inform. Theory, IT-13, 260-269, April, 1967.

[2] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for minimizing symbol 

error rate,” IEEE Trans, Inform. Theory, IT-20; 284-287, March, 1974.
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• Encoder structure:

• Encoding Process:

S0 S1

c1

c2

Input u

Code rate: ½;

Memory: m = 2;

Constraint length: m + 1 = 3;
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At time t1

At time t2
At time t3

(Initialized state S0S1 = 00)

- The (7, 5)8 conv. code
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Encoding:

𝑐1 = u     S0      S1;

𝑐2 = u S1;

Registers update:

S1
’ = S0.

S0
’ = u.



Input sequence [u1 u2 u3 u4 u5 u6] = [1 0 1 0 0 0]

Output sequence [𝑐1
1𝑐1

2 𝑐2
1𝑐2

2 𝑐3
1𝑐3

2 𝑐4
1𝑐4

2 𝑐5
1𝑐5

2 𝑐6
1𝑐6

2] = [11 10 00 10 11 00]
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State definition (S0 S1)

a = 00

b = 10

c = 01

d = 11

Interpretation of 

the state diagram

01

c

00

aInput bit (0) / output bits (11)

The current state of the 

encoder is c. If the input 

bit is 0, it will output 11

and the next state of the 

encoder is a.

A state transition diagram of the (7, 5)8 conv. code
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Tree Representation of the (7, 5)8 conv. code
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Time unit: 1       2       3        4

Input bit as 0

Input bit as 1

State after transition

Output from transition
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Tree diagram interpretation:

The current state of the encoder is 

b. If the input bit is 0, the output 

will be 10, and the next state of the 

encoder is c.

Example 5.1  Determine the codeword that corresponds to message [0 1  1 0 1] 
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Trellis of the (7, 5)8 conv. code

State Table

IN Current State     Next State    Out   ID

0

1

0

1

0

1

0

1

00

00

01

01

10

10

11

11

00

10

00

10

01

11

01

11

00

11

11

00

10

01

01

10

Remark: A trellis tells the state transition and IN/OUT relationship. It can be 

used to yield a convolutional codeword of a sequential input. 

Example 5.2 Use the above trellis to determine the codeword that corresponds 

to message [0 1 1 0 1].

IN: 1
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OUT1
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IN: 0     
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47



Some practical conv. codes

Remark: A convolutional code’s error-correction capability improves by increasing the 

number of the encoder states.

Remark: 𝑚 tailing bits are needed to force the encoder back to the all-zero state. For the 

above nonsystematic conv. codes, 𝑚 0s are needed.
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(7, 5)8 conv. code (15, 13)8 conv. code

4 states 8 states

(23, 35)8 conv. code

16 states

(171, 133)8 conv. code

64 states



The encoder structure can also be represented by generator sequences or transfer functions.
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Example 5.3

– The (7,5) 8 conv. code can also be written as: 

A rate ½  conv. code with generator sequences 

𝑔 1 = 1 1 1 ,  𝑔 2 = [1 0 1]

A rate ½  conv. code with transfer functions 

𝑔 1 (𝑥) = 1 + 𝑥 + 𝑥2,  𝑔 2 (𝑥) = 1 + 𝑥2

– The (15,13) 8 conv. code can also be written as: 

A rate ½  conv. code with generator sequences: 

𝑔(1) = 1 1 0 1 ,  𝑔(2) = 1 0 1 1

A rate ½  conv. code with transfer functions:

𝑔 1 𝑥 = 1 + 𝑥 + 𝑥3,  𝑔 2 𝑥 = 1 + 𝑥2 + 𝑥3



When the codeword (message) length is finite, conv. code is also a linear block code. 

That says its encoding can be defined by ҧ𝑐 = ത𝑢 ∙ 𝐆
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Example 5.4 For the (7,5) convolutional code with message ത𝑢 = (𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5), 
we have

𝑢1 ൝
𝑐1
1 = 0⊕ 0⊕ 𝑢1
𝑐1
2 = 0⊕ 𝑢1

𝑢2 ൝
𝑐2
1 = 0⊕ 𝑢1 ⊕𝑢2
𝑐2
2 = 0⊕ 𝑢2

𝑢3 ൝
𝑐3
1 = 𝑢1 ⊕𝑢2 ⊕𝑢3
𝑐3
2 = 𝑢1 ⊕𝑢3

𝑢4 ൝
𝑐4
1 = 𝑢2 ⊕𝑢3 ⊕𝑢4
𝑐4
2 = 𝑢2 ⊕𝑢4

𝑢5 ൝
𝑐5
1 = 𝑢3 ⊕𝑢4 ⊕𝑢5
𝑐5
2 = 𝑢3 ⊕𝑢5

𝐆 =

1 1 1
0 0 1
0 0 0

0 1 1 0 0 0 0
1 1 0 1 1 0 0
0 1 1 1 0 1 1

0 0 0
0 0 0

0 0 0 1 1 1 0
0 0 0 0 0 1 1

𝑢1
𝑢2
𝑢3
𝑢4
𝑢5

𝑐1
1 𝑐1

2 𝑐2
1 𝑐2

2 𝑐3
1 𝑐3

2 𝑐4
1 𝑐4

2 𝑐5
1 𝑐5

2



In general, given a rate ½ 𝑚 = 2 conv. code can be defined by 𝑔 1 𝑥 = 𝑔0
1
+

𝑔1
1
𝑥 + 𝑔2

1
𝑥2 and 𝑔 2 𝑥 = 𝑔0

2
+ 𝑔1

2
𝑥 + 𝑔2

2
𝑥2. Its generator matrix 𝐆 is
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𝐆 =
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⋱
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§5.2 Systematic Convolutional Codes

- The (7, 5)8 conv. code’s systematic counterpart is: 

S1
S0

(7, 5)8 conv. code

S1S0

(1, 5/7)8 conv. code

Nonsystematic code Systematic code

Encoding and Registers’ updating rules:

[S0 S1] are initialized as [0 0];

c1 = u ;     (systematic feature)                  feedback = S0 S1 ;

c2 = u     feedback     S1 ;           S1
’ = S0 ; S0

’ = u feedback;

c1

c2

c1
c2

u

u

Remark: Systematic encoding structure is often used to constitute Turbo codes 

(Chapter 6). 



For the (1, 5/7)8 conv. code

State Table

§5.2 Systematic Convolutional Codes

00

01

10

11

00

01

10

11

00

11

11
00

10
01

01
10

Trellis

IN: 0     

IN: 1

OUT

1

2

3

4

5

6

7

8

IN Current State Next State Out ID

0 00 00 00 1

1 00 10 11 2

0 01 10 00 3

1 01 00 11 4

0 10 11 01 5

1 10 01 10 6

0 11 01 01 7

1 11 11 10 8



§5.3 Viterbi Decoding

Let us extend the trellis of the (7, 5)8 conv. code as if there is a sequential input.

- Such an extension results in a Viterbi trellis

- A path in the Viterbi trellis represents a convolutional codeword that 

corresponds to a sequential input (message).
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§5.3 Viterbi Decoding

- Decoding motivation: Given a received word ҧ𝑟, find the mostly likely codeword መҧ𝑐
such that the Hamming distance 𝑑( ҧ𝑟, Ƹ𝑐) is minimized.

- Since መҧ𝑐 corresponds to a path in the Viterbi trellis, tracing back the path of መҧ𝑐
enables us to find out the message.

- Branch metrics: Hamming distance between a transition branch’s output and the 

corresponding received symbol (or bits).

- Path metrics: Accumulated Hamming distance of the previous branch metrics.   
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§5.3 Viterbi Decoding

Given the (7, 5)8 conv. code as in Examples 5.1 - 5.3. The transmitted               

codeword is ҧ𝑐 = 00 11 01 01 00 10 11 (codeword produced by adding 

tailing bits). After channel, the received word is

ҧ𝑟 = 00 11 11 01 00 10 11
Try to use the following Viterbi trellis to decode it.

Step 1: Calculate all the branch metrics.

00

01

10

11

00

11

00

11

10

01

00

11

11
00

10

10

01

01

00

11

11
00

10
01

01

10

00

11

11
00

10
01

01

10

00          11           11          01            00           10           11 

0

2

2

0

1

1

2
0
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0
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Example 5.5



§5.3 Viterbi Decoding

Step 2: Calculate the path metrics and memorize the path IDs.
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3,6 1,6

2,2
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3,3 2,3

1,7

2,4

2,6 3,8

1,4

3,5

2,1

When the two joining paths give the same accumulated 

Hamming distance, pick up one randomly.  

When two paths join 

in a node, keep the 

smaller accumulated 

Hamming distance. 

Meanwhile, memorize 

ID of the (selected) 

branch that leads to 

the node.
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§5.3 Viterbi Decoding

Step 3: Pick up the minimal path metric and trace back to determine the message.

Tracing rules: (1) Trellis connection;

(2) The tracing route should match the trellis transition ID. 
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§5.3 Viterbi Decoding

Branch Metrics Table Path Metrics Table

Trellis Transition ID Table

Metrics of the Viterbi Decoding Process

ID Branch Metric

1 0 2 2 1 0 1 2

2 2 0 0 1 2 ∞ ∞

3 ∞ ∞ 0 1 2 1 0

4 ∞ ∞ 2 1 0 ∞ ∞

5 ∞ 1 1 2 1 0 ∞

6 ∞ 1 1 0 1 ∞ ∞

7 ∞ ∞ 1 0 1 2 ∞

8 ∞ ∞ 1 2 1 ∞ ∞

00 0 0 2 3 2 2 3 1

01 ∞ ∞ 3 1 1 3 1 ∞

10 ∞ 2 0 2 2 1 ∞ ∞

11 ∞ ∞ 3 1 2 3 ∞ ∞

00 1 1 3 3 1 1 3

01 × 5 5 7 5 5 ×

10 2 2 2 4 4 × ×

11 × 6 6 6 8 × ×

Remark: With tailing bits, the backward trace always starts from the all-zero state.



Free distance of a convolutional code

§ 5.3 Viterbi Decoding

- A conv. code’s performance is determined by its free distance.

- Free distance

𝑑free = min 𝑑Ham ഥ𝑐1, ഥ𝑐2 , ഥ𝑐1 ≠ ഥ𝑐2

- With knowing 𝟎 = [0 0 0 …0] is also a convolutional codeword

𝑑free = min 𝑤𝑒𝑖𝑔ℎ𝑡 ҧ𝑐 , ҧ𝑐 ≠ 𝟎 .
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§ 5.3 Viterbi Decoding

- The tailing bits are needed to ensure a greater free distance for the code.

- Convolutional code with a large number of states will have a great 𝑑free, and hence 

stronger error-correction capability

Hence, it is the minimum weight of all finite length paths in the Viterbi trellis that 

diverge from and emerge with the all zero state.

𝑑free = 5
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Remark: Convolutional code is more competent in correcting spread 

errors, but not burst errors.

error

§ 5.3 Viterbi Decoding

E.g., with ҧ𝑟1 = 0 1 𝑒 1 𝑒 1 0 1 0 0 𝑒 1

and ҧ𝑟2 = 0 1 0 𝑒 𝑒 𝑒 0 1 0 0 1 1

Viterbi algorithm is more competent in correcting received vector ҧ𝑟1.



§5.4 Soft-Decision Viterbi Decoding

➢ Soft-decision Viterbi decoding 

• While we are performing the hard-decision Viterbi decoding, we have the scenario 

that two joining paths yield the same accumulated Hamming distance. This would 

cause decoding ‘ambiguity’ and performance penalty;

• Such a performance loss can be compensated by utilizing soft-decision decoding, 

e.g., soft-decision Viterbi decoding

Modulation

01

➢ Modulation and Demodulation

• Modulation: mapping the coded symbol into a transmitted symbol;

• Demodulation: determining the codeword symbol with a received symbol;

information

(1, 0)(-1, 0)

Transmitted symbol

Demodulation

01

(1, 0)(-1, 0)

Channel
(0.5, 0.9)

Received symbol

BPSK



Definition: The Euclidean distance between points p and q is the length of the line

segment connecting them.

p(x1, y1)

q(x2, y2)

➢ Modulation and Demodulation (e.g., BPSK)

Demodulation

01

(1, 0)(-1, 0)

(0.5, 0.9)

Received symbol Hard-decision: the information bit is 0. 

The Hamming distance becomes the Viterbi 

decoding metrics;

Soft-decision: the information bit has Pr. of 

0.7 being 0 and Pr. of 0.3 bing 1. The 

Euclidean distance (or probability) 

becomes the Viterbi decoding metrics;

➢ Euclidean Distance

𝑑𝐸𝑢𝑑 = (𝑥1 − 𝑥2)
2 + (𝑦1 − 𝑦2)

2

§5.4 Soft-Decision Viterbi Decoding



Example 5.6. Given the (7, 5)8 conv. code as in Examples 5.5. 

The transmitted  codeword is

After BPSK modulation, the transmitted symbols are: 

(1, 0), (1, 0), (-1, 0), (-1, 0), (1, 0), (-1, 0), (1, 0), (-1, 0), (1, 0), (1, 0), (-1, 0), (1, 0), (-1, 0), (-1, 0).

After the channel, the received symbols are: 

(0.8, 0.2), (1.2, -0.4), (-1.3, 0.3), (-0.9, -0.1), (-0.5, 0.4), (-1.0, 0.1), (1.1, 0.4), (-0.7, -0.2), 

(1.2, 0.2), (0.9, 0.3), (-0.9, -0.2), (1, 0.2), (-1.1, 0), (-0.8, 0.1).

§5.4 Soft-Decision Viterbi Decoding

00

01

10

11

00

11

00

11

10

01

00

11

11
00

10

10

01

01

00

11

11
00

10
01

01

10

00

11

11
00

10
01

01

10

00

11

10
01

00

11

ҧ𝑐 = 00 11 01 01 00 10 11



(0.8, 0.2)

(1.2, -0.4)

(-1.3, 0.3)

(-0.9, -0.1) (-1.0, 0.1) (0.9, 0.3)

(-0.5, 0.4) (1.2, 0.2)

(-0.7, -0.2)

(1.1, 0.4)

Step 1: Calculate all the branch metrics. 0 (1, 0)

1 (-1, 0)

§5.4 Soft-Decision Viterbi Decoding

Branch metric: −1.3 − 1 2 + 0.3 − 0 2 +           −0.9  +  1  2  +  −0.1  −  0  2  =  5.40
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Step 2: Calculate the path metrics and memorize the path IDs.

When  two  paths  join  in  a  node,  keep  the  smaller  accumulated squared  Euclidean  distance.

§5.4 Soft-Decision Viterbi Decoding
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Step 3: Pick up the minimal path metric and trace back to determine the message.

Tracing rules: The same as hard-decision Viterbi decoding algorithm.  

Decoding output: 0 1 1 0 1 0 0

§5.4 Soft-Decision Viterbi Decoding
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§5.4 Soft-Decision Viterbi Decoding

Branch Metrics Table

Trellis Transition ID Table

Path Metrics Table

Metrics of the Soft-Decision Viterbi Decoding Process

ID Branch Metric

1 0.28 9.00 6.42 3.10 0.18 3.69 7.66

2 8.28 0.20 0.42 4.70 8.58 ∞ ∞

3 ∞ ∞ 0.42 4.70 8.58 4.09 0.06

4 ∞ ∞ 6.42 3.10 0.18 ∞ ∞

5 ∞ 3.80 4.42 7.50 4.98 0.09 ∞

6 ∞ 5.40 2.42 0.30 3.78 ∞ ∞

7 ∞ ∞ 2.42 0.30 3.78 7.69 ∞

8 ∞ ∞ 4.42 7.50 4.98 ∞ ∞

00 0 0.28 0.98 12.50 9.60 9.78 13.47 3.53

01 ∞ ∞ 12.08 4.90 3.20 12.98 3.47 ∞

10 ∞ 8.28 0.48 9.70 8.00 3.38 ∞ ∞

11 ∞ ∞ 13.68 2.90 10.00 11.78 ∞ ∞

00 1 1 3 3 1 1 3

01 × 5 5 7 5 5 ×

10 2 2 2 4 4 × ×

11 × 6 6 6 6 × ×



§5.5 BCJR Decoding

- A Soft-In-Soft-Out (SISO) decoding algorithm that takes probabilities as the input 

and delivers probabilities as the output.

- Hard-decision Viterbi Decoding : a Hard-In-Hard-Out (HIHO) decoding.                   

Soft-decision Viterbi Decoding : a Soft-In-Hard-Out (SIHO) decoding.

BCJR Decoding: a Soft-In-Soft-Out (SISO) decoding.     

- With an attempt to deliver both the a posteriori probabilities of 𝑃 𝑐𝑡|𝑦𝑡 and 

𝑃 𝑢𝑡′|𝑦𝑡 , it is also called the maximum a posteriori (MAP) algorithm.

message symbols: 𝑢1, 𝑢2, … , 𝑢𝑡′ , …
codeword symbols: 𝑐1, 𝑐2, … , 𝑐𝑡, …
received symbols: 𝑦1, 𝑦2, … , 𝑦𝑡 , …

In light of a rate ½ code

𝑐1
1, 𝑐1

2, 𝑐2
1, 𝑐2

2, … , 𝑐𝑡′
1 , 𝑐𝑡′

2 , …

𝑦1
1, 𝑦1

2, 𝑦2
1, 𝑦2

2, … , 𝑦𝑡′
1 , 𝑦𝑡′

2 , …



§5.5 BCJR Decoding

- In a trellis (e.g., trellis of the (7, 5)8 conv. code). 

IN: 0     

IN: 1The (IN, OUT, current state, next state) tuple happens as an entity. 

θ
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11
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10

a

b

c

d

a

b

c

d

a

b

c

d

Ω0(𝑡
′ − 1) Ω′(𝑡′ + 1)Ω(𝑡′) Ω′′(𝑡′ + 2)



§5.5 BCJR Decoding

00

11

11
00

10

01

01
10

IN: 0     

IN: 1

a

b

c

d

θ

θ

θ

θ

We seek to determine all the Prob[trellis transition w.r.t. an input 𝜃] at time 𝑡′ to know

𝑃 𝑢𝑡′ = 𝜃|𝑦𝑡
We seek to determine all the Prob[trellis transition w.r.t. an output 𝜃] at time 𝑡′ to know

𝑃 𝑐
𝑡′
1(2)

= 𝜃|𝑦𝑡

00

11

11
00

10

01

01
10

00

11

11
00

10

01
01

10

a

b

c

d

a

b

c

d

a

b

c

d

Ω0(𝑡
′ − 1) Ω′(𝑡′ + 1)Ω(𝑡′) Ω′′(𝑡′ + 2)

That says at time instant  𝑡′

∑  Prob [trellis transition  w.r.t.  an input  𝜃] = Prob [𝑢𝑡′  =  𝜃],  𝜃  ∈  {  0,1  }.
∑  Prob [trellis transition  w.r.t.  an output of  𝜃] = Prob [𝑐

𝑡
1

′  
2  

=  𝜃],  𝜃  ∈  {  0,1  }.



- For a rate half conv. code,  

- Trellis state transition probability:

§5.5 BCJR Decoding
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Ω0(𝑡
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- Determine the state transition probabilities.

ΓΩ→Ω′ = 𝑃𝑎 𝑢𝑡′ 𝑃ch 𝑐𝑡′
1 𝑃ch 𝑐𝑡′

2

𝑢𝑡′ → 𝑐𝑡′
1 , 𝑐𝑡′

2
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- Determine the state transition probabilities.
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Ω0(𝑡
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ΓΩ→Ω′ = 𝑃𝑎 𝑢𝑡′ 𝑃ch 𝑐𝑡′
1 𝑃ch 𝑐𝑡′

2

A priori prob. of information bit. E.g. 

w/o knowledge of 𝑢𝑡′ ,
𝑃𝑎 𝑢𝑡′ = 0 = 𝑃𝑎 𝑢𝑡′ = 1 = 0.5

Channel observations: E.g. BPSK is used

𝑃ch 𝑐𝑡′
1 = 0 = 𝑃 𝑦𝑡 𝑐𝑡′

1 = 0 =
1

𝜋𝑁0

exp −
𝑦𝑡 − 𝑠2

2

𝑁0

𝑃ch 𝑐𝑡′
1 = 1 = 𝑃 𝑦𝑡 𝑐𝑡′

1 = 0 =
1

𝜋𝑁0

exp −
𝑦𝑡 − 𝑠1

2

𝑁0

𝑃ch 𝑐𝑡′
2 can be calculated similarly.



§5.5 BCJR Decoding

- Knowing the Viterbi trellis starts from the all-zero state, we initialize: 

- E.g., in the highlighted trellis transition

- Determine the probability of each beginning state.

00

11

11
00

10

01

01
10

a

b

c

d

00

11

11
00

10

01

01
10

a

b

c

d

a

b

c

d

Ω0(𝑡
′ − 1) Ω′(𝑡′ + 1)Ω(𝑡′)



§5.5 BCJR Decoding

- By ensuring after encoding, the shift registers (encoder) are restored to the all zero state 

(achieved by bit tailing), we can initialize: 

- E.g., in the highlighted trellis transition

- Determine the probability of each ending state.

a
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d

00

11

11
00
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01

01
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00

11

11
00
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01
01

10

a

b

c

d

a
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c

d

Ω′(𝑡′ + 1)Ω(𝑡′) Ω′′(𝑡′ + 2)

𝐵𝑘+2 𝑎 = 1, and 𝐵𝑘+2 𝑏 = 𝐵𝑘+2 𝑐 = 𝐵𝑘+2 𝑑 = 0.



§5.5 BCJR Decoding

State transition indicated by 

State transition indicated by 

After the Forward 

Trace and Backward 

Trace, we obtain all 

the 𝐴𝑡′ Ω ,𝐵𝑡′+1 Ω‘

and ΓΩ→Ω′ of each 

time instant 𝑡′. We 

can now determine 

the a posteriori 

probabilities 

𝑃 𝑢𝑡′|𝑦𝑡 for each 

information bit as

𝑃 𝑢𝑡′ = 0|𝑦𝑡

𝑃 𝑢𝑡′ = 1|𝑦𝑡

𝑁𝑝: Normalization factor that ensures 𝑃 𝑢𝑡′ = 0|𝑦𝑡 + 𝑃 𝑢𝑡′ = 1|𝑦𝑡 =1



§5.5 BCJR Decoding

- E.g.,

- Decision based on the a posteriori probabilities.

𝑁𝑝 = 𝑃 𝑢𝑡′ = 0|𝑦𝑡 + 𝑃 𝑢𝑡′ = 1|𝑦𝑡

𝑃 𝑢𝑡′ = 0|𝑦𝑡

ො𝑢𝑡′ = 0, if 𝑃 𝑢𝑡′ = 0|𝑦𝑡 ≥ 𝑃 𝑢𝑡′ = 1|𝑦𝑡

ො𝑢𝑡′ = 1, if 𝑃 𝑢𝑡′ = 1|𝑦𝑡 > 𝑃 𝑢𝑡′ = 0|𝑦𝑡

Similarly, 𝑃 𝑐𝑡′
1 = 0|𝑦𝑡 , 𝑃 𝑐𝑡′

1 = 1|𝑦𝑡 , 𝑃 𝑐𝑡′
2 = 0|𝑦𝑡 , 𝑃 𝑐𝑡′

2 = 1|𝑦𝑡 can be made. 



§5.5 BCJR Decoding

Example 5.7. With the same transmitted codeword and received symbols of Example 5.6, 

use the BCJR algorithm to decode it. 

With the received symbols, we can determine

𝑃𝑐ℎ 𝑐6
1 = 0 = 0.14

𝑃𝑐ℎ 𝑐6
1 = 1 = 0.86

𝑃𝑐ℎ 𝑐6
2 = 0 = 0.88

𝑃𝑐ℎ 𝑐6
2 = 1 = 0.12

𝑃𝑐ℎ 𝑐7
1 = 0 = 0.10

𝑃𝑐ℎ 𝑐7
1 = 1 = 0.90

𝑃𝑐ℎ 𝑐7
2 = 0 = 0.17

𝑃𝑐ℎ 𝑐7
2 = 1 = 0.83
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§5.5 BCJR Decoding

Step 4: Determine the a posteriori probabilities of each information bit.

ො𝑢1 = 0

ො𝑢2 = 1

ො𝑢3 = 1

ො𝑢5 = 1

ො𝑢4 = 0

ො𝑢6 = ො𝑢7 = 0

𝑃 𝑢1 = 0|𝑦1 = 1
𝑃 𝑢1 = 1|𝑦1 = 0

𝑃 𝑢2 = 0|𝑦2 = 0
𝑃 𝑢2 = 1|𝑦2 = 1

𝑃 𝑢3 = 0|𝑦3 = 0
𝑃 𝑢3 = 1|𝑦3 = 1

𝑃 𝑢4 = 0|𝑦4 = 1
𝑃 𝑢4 = 1|𝑦4 = 0

𝑃 𝑢5 = 0|𝑦5 = 0
𝑃 𝑢5 = 1|𝑦5 = 1



§5.5 BCJR Decoding

BER performance of (7, 5)8 conv. code over AWGN channel using BPSK.
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BER performance of different conv. code over AWGN channel using BPSK.
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§5.6 Trellis Coded Modulation

- Convolutional code enables reliable communications. But as a channel 

code, its error-correction function is on the expense of spectral efficiency.

- E.g., an uncoded system 

using BPSK
A rate 1/2 conv. coded system 

using BPSK

- Can we achieve reliable and yet spectrally efficient communication?

Solution: Trellis Coded Modulation (TCM) that integrates a conv. code with 

a high order modulation [3]. 

[3] G.  Ungerboeck, "Channel coding with multilevel/phase signals," IEEE Trans. Inform. Theory, vol. IT-28, pp. 55-67, 1982. 

η = 1 info bits/symbol η = 0.5 info bits/symbol



§5.6 Trellis Coded Modulation

- A general structure of the TCM scheme

Rate k/(k+1) 

conv. 

encoder

Select a 

subset from 

the 

constellation
Select a 

point  

from the 

subset

u1

u2

uk

c1

c2

ck+1

uk+1

uk+v

Output 

symbol



§5.6 Trellis Coded Modulation

- A rate 2/3 TCM code.

S1 S2

Select a 
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- State table of the rate 2/3 TCM code
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Δ0 = 2 𝜀′ sin
𝜋

8
= 0.765 𝜀′
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Subset 2
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- Set Partitioning 8PSK

By doing set partitioning, the minimum distance between point within a 

subset is increasing as: Δ0 < Δ1 < Δ2.
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- Viterbi trellis of the rate 2/3 TCM code

For diverse/remerge transition:

For parallel transition:

Choose the smaller one as the free distance of the code:

- Bit c3 = 0 and c3 = 1 result in two parallel transition branches. By doing set partitioning, 

we are trying to maximize the Euclidean distance between the two parallel branches. So 

that the free distance of the TCM code can be maximized.

𝑑free
2 = 4𝜀′

𝑑free
2 = 𝑑2 0,2 + 𝑑2 0,1 + 𝑑2(0,2)

𝑑free
2 = 𝑑2(0,4) = 4𝜀′

= 2𝜀′ + 2 − 2 𝜀′ + 2𝜀′ = 4.568𝜀′



§5.6 Trellis Coded Modulation

- Asymptotic coding gain over an uncoded system.

- Spectral efficiency (η) = 2 info bits/sym.

uncoded QPSK rate 2/3 coded 8PSK 

- With the same transmission spectral efficiency of 2 info bits/sym, the TCM coded system 

achieves 3 dB coding gain over the uncoded system asymptotically.
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